B cell maintenance of subcapsular sinus macrophages protects against a fatal viral infection independent of adaptive immunity

E Ashley Moseman ¹, Matteo Iannacone, Lidia Bosurgi, Elena Tonti, Nicolas Chevrier, Alexei Tumanov, Yang-Xin Fu, Nir Hacohen, Ulrich H von Andrian

Affiliations

PMID: 22386268 PMCID: PMC3359130 DOI: 10.1016/j.immuni.2012.01.013

Free PMC article

Abstract

Neutralizing antibodies have been thought to be required for protection against acutely cytopathic viruses, such as the neurotropic vesicular stomatitis virus (VSV). Utilizing mice that possess B cells but lack antibodies, we show here that survival upon subcutaneous (s.c.) VSV challenge was independent of neutralizing antibody production or cell-mediated adaptive immunity. However, B cells were absolutely required to provide lymphotoxin (LT) $\alpha1\beta2$, which maintained a protective subcapsular sinus (SCS) macrophage phenotype within virus draining lymph nodes (LNs). Macrophages within the SCS of B cell-deficient LNs, or of mice that lack LT $\alpha1\beta2$ selectively in B cells, displayed an aberrant phenotype, failed to replicate VSV, and therefore did not produce type I interferons, which were required to prevent fatal VSV invasion of intranodal nerves. Thus, although B cells are essential for survival during VSV infection, their contribution involves the provision of innate differentiation and maintenance signals to macrophages, rather than adaptive immune mechanisms.

Copyright © 2012 Elsevier Inc. All rights reserved.