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INTRODUCTION

Polymer-drug conjugation (Harris, 1992; Harris and Chess, 2003; Haag and Kratz, 2006; Pelegri-
O’Day et al., 2014; Hoffman, 2016; Ekladious et al., 2019) was first described in the 1954 by German
chemist, Horst Jatzkewitz, who demonstrated that covalent attachment of poly (vinyl pyrrolidone) to
the psychoactive compound, mescaline, could be used to prolong its circulation and duration of
action (Figure 1A) (Jatzkewitz, 1954; Jatzkewitz, 1955; Luxenhofer, 2020). Yet despite its novelty and
utility, Jatzkewitz’s innovation went largely unnoticed until the mid 1970s when it was revived by
Ringsdorf, Kopecek, and Duncan, among others, who championed the notion that these novel
macromolecules could enhance the suboptimal activity of various pharmaceuticals (Ringsdorf,
1975). It wouldn’t be until 1990—nearly 36 years from the publication of Jatzkewitz’s initial
work—that the first polymer-drug conjugate would receive market approval in the form of
Adagen, adenosine deaminase protein conjugated with 5 kDa poly (ethylene glycol), or PEG,
used to treat a rare and hereditary, pediatric metabolic disorder called adenosine deaminase
severe combined immunodeficiency (Hershfield et al., 1987).

Polymer-drug conjugates have since gradually increased in their clinical application, nowwith more
than 29 marketed products that vary widely in polymer architecture (linear and branched), molecular
weight (0.3–60 kDa per polymer), and degree of conjugation (1–69-82 per drug) and nearly all of which
employ the synthetic polymer, PEG, a polyether typically produced by the ring-opening polymerization
of ethylene glycol (Alconcel et al., 2011; Ekladious et al., 2019; Xu et al., 2022). In addition to the
diversity of their appended polymers, these therapeutics also vary widely in their drug partner, ranging
from: 1) peptides (e.g. Somavert HGH receptor antagonist) to 2) small molecules (e.g. SMANCS
neocarzinostatin chemotherapy and Movanik naloxone laxative) and 3) nucleic acids (e.g. Macugen
anti-VEGF aptamer antiangiogenic) (Perdue et al., 2020). More recently, polymer conjugation has
demonstrated further clinical utility in stabilizing lipid nanoparticles used to deliver small interfering
RNA (siRNA, Onpattro) for the treatment of hereditary transthyretin-mediated (hATTR) amyloidosis
(Zhang et al., 2020), as well as both current mRNA-based vaccines for SARS-CoV-2 (COVID-19),
BNT162b2/Comirnaty and mRNA-1273/Spikevax (Schoenmaker et al., 2021). Interestingly, all three
nanoparticle formulations share in their use of lipids tethered with 2 kDa linear, methoxy-terminal
PEG (mPEG). While Phase III clinical trials for both mRNA vaccines demonstrated overwhelming
safety and efficacy (e.g. 4.7 and 2.8 anaphylactic reactions cases per million registered during the first
months both vaccination campaigns, respectively (CDC COVID-19 Response Team and Food and
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Drug Administration, 2021)), their widespread use has led to
concerns from some that pre-existing anti-PEG antibodies may
induce hypersensitivity reactions (de Vrieze, 2021) or that drug-
induced PEG immunity may impact the efficacy or safety of
subsequently administered PEGylated drugs or vaccines.

PEG’s remarkable hydrophilicity, flexibility, inertness, and
relative biocompatibility have found the polymer numerous
uses beyond modulating drug circulation or activity and today
it can be found near ubiquitously in both consumer products such
as detergents, cosmetics, and car wax, as well as in industrial
applications including electroplating, historical artifact
preservation, and molded product production (Harris, 1992;
Prime and Whitesides, 1993; Harris and Chess, 2003; Li et al.,
2005; Jokerst et al., 2011). PEGylating has also been used to
improve stability of contrast agents for in vivo fluorescence
imaging, photodynamic therapy, and sonodynamic therapy
(Ding et al., 2018; Chen et al., 2021; Xu et al., 2022). Given
PEG’s near exclusive utilization in polymer-drug conjugates, our
rapidly increasing consumer use of the compound, and recent,
prevalent, and systemic exposure to PEG in the form of mRNA
vaccines and boosters for SARS-CoV-2 (currently >0.5 bn doses
(C ovid-data-tracker, 2022) in the United States) (Polack et al.,
2020; Baden et al., 2021), several obvious questions arise with
relevance to both public awareness and public health: Is PEG
immunogenetic? Does prior environmental exposure or PEG-drug

conjugate therapy impact immune responses to PEG? Will PEG
immunogenicity affect future vaccine efficacy? How can we
minimize and hedge-against PEG immunogenicity in future
polymer-drug formulations?

Immunity Towards PEG Is Pre-existing and
Drug Exposure-inducible
PEGwas classified as a GRAS (Generally Recognized as Safe) food
ingredient by the FDA in 1973 and has a long history of safe use in
humans. It is the most widely used stealth polymer in drug
delivery and is typically regarded as a non-immunogenic
polymer. Early studies by Richter and Akerblom in 1984
found that 0.2% of treatment-naïve individuals (individuals
who have never received PEGylated biopharmaceuticals), had
antibodies specific to PEG in their plasma (Richter and
Åkerblom, 1984). Since then, the presence of pre-existing anti-
PEG antibodies has been reported to range from 4.5 to 43.1% in
treatment-naïve donors (Shpetner and Vallee, 1991; Garratty,
2004; Chen et al., 2016; Lubich et al., 2016; Yang et al., 2016),
leading to the hypothesis that the frequency of pre-existing anti-
PEG antibodies is increasing over time (Yang et al., 2016). Recent
analysis of 79 historical (samples collected from the 1970s–1990s)
and 377 contemporary human serum samples, indicate the
presence of anti-PEG antibodies (IgG and IgM) in

FIGURE 1 | Polymer-Drug Conjugates: Inception to Immunology. (A) Renal excretion of mescaline and equimolar dosages of mescaline-PVP conjugate as
measured by chromatography of urinary extracts obtained following s.c. adminisration in white mice circa 1955. (B) Thymus-dependent immune response against PEG.
(upper panel) TFH activation following antigen presentation by APCs. Somatic hypermutation and class switching in B cells following antigen encounter and interaction
with activated TFH cells. (lower panel) Affinity maturation of PEG-specific B cells in the spleen. (C) Thymus-independent immune response against PEG.
Crosslinking of BCRs by PEG and coactivation of TLRs. Reproduced with permission from Reproduced with permission from (A) Luxenhofer, 2020 and (B,C) Chen
et al., 2021. Copyright (A) 2020 de Gruyter GmbH and (B,C) 2021 American Chemical Society.
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approximately 56 and 72% of samples respectively (Yang et al.,
2016) with no significant difference in the measured
concentrations of anti-PEG IgG and IgM, strongly suggesting
that an apparent increase in pre-existing anti-PEG antibodies
with time may in fact be a consequence of increased sensitivity in
anti-PEG immunoassays developed in recent years (Yang et al.,
2016; Chen et al., 2021). For example, direct binding assays using
beads or ELISA plates are generally more sensitive compared to
traditional bridging assays. Although these studies found that the
prevalence of pre-existing anti-PEG antibodies was higher than
was previously appreciated, the absolute concentrations of anti-
PEG remain low in most positive individuals (Chen et al., 2021)
and, as discussed later, drugs administered at different levels may
be differentially impacted by pre-existing PEG immunity.

In addition to treatment-naïve immunity, anti-PEG antibodies
are also drug-inducible and associated with systemic
administration of PEGylated proteins (Chen et al., 2021),
nucleic acids, liposomes, and nanoparticles (Judge and
MacLachlan, 2008; Mima et al., 2015; Avci-Adali et al., 2013;
Ishida et al., 2006a; Ishida et al., 2006b; Ishida et al., 2006c; Kozma
et al., 2019). Drug-induced anti-PEG antibody responses occur
via two principal mechanisms: T cell-dependent (TD) and T cell-
independent (TI) pathways (Figures 1B,C). TD is typically
associated with PEGylated proteins and peptides (Mima et al.,
2015; Elsadek et al., 2020), while TI has been associated with
systemic exposure to PEGylated nanoparticles (Freire Haddad
et al., 2022). Anti-PEG antibodies induced by TD occur when
peptides are presented by B cells to helper T cells, and is
characterized by an initial peak of IgM, followed by class
switching, and a larger peak in IgG (Freire Haddad et al.,
2022). TI occurs when the antigen crosslinks receptors on IgM
memory B cells and is characterized by high concentrations of
IgM and low concentrations of IgG. Antibodies produced via the
TI pathway have a weaker affinity for PEG compared to TD
(Freire Haddad et al., 2022). While the basic underpinnings of
anti-PEG immunity such as these are clear, 1) our understanding
of how these processes vary with health or disease status, age, sex,
or ethnicity and 2) our ability to predict the magnitude and
functional impact of these responses on patients collectively
remain unclear.

PEG Immunity can Induce Hypersensitivity
Reactions and Alter Drug Transport/
Efficacy but these Effects Vary Across
Formulation Type and Mode of
Administration
Hypersensitivity reactions, including anaphylaxis has been
reported in association with many PEG-containing
formulations including PEG-protein conjugates (pegloticase
(Lipsky et al., 2014), pegvaliase (Gupta et al., 2018),
pegaspargase (Hasan et al., 2017; Browne et al., 2018; Liu
et al., 2019), pegcrisantaspase (Rau et al., 2018)), PEG
excipients (polysorbate 80 (Pérez-Pérez et al., 2011)), contrast
agents (SonoVue (de Groot et al., 2004; Geleijnse et al., 2009)),
liposomes encapsulating oligonucleotides or plasmid DNA
(Semple et al., 2005; Judge et al., 2006), and liposomal

doxorubicin (Chanan-Khan et al., 2003; Szebeni, 2014). Pre-
existing PEG antibodies, in contrast, have been implicated in
hypersensitivity reactions to PEGylated medicines including
pegaspargase (Liu et al., 2019) and the RNA aptamer,
pegnivacogin (Povsic et al., 2013). Acute severe allergic
reactions to pegnivacogin were observed only in patients with
pre-existing anti-PEG antibodies, and the level of anti-PEG IgG
antibodies correlated with adverse event severity (Povsic et al.,
2016). In addition, 2 of 25 phenylketonuria patients treated with
pegvaliase developed anaphylactic and hypersensitivity reactions
to a PEGylated contraceptive (Longo et al., 2014) and 3 patients
who developed allergies to pegaspargase also experienced
hypersensitivity reactions when treated with pegcrisantaspase
(Rau et al., 2018), indicating that anti-PEG antibodies induced
by one PEGylated medicines can cross-react to other
subsequently administered PEGylated medicines. The
mechanism(s) by which anti-PEG antibodies induce
hypersensitivity reactions is poorly understood; however, some
possible mechanisms by which pegylated nanoparticles and
pegylated nucleotides could induce hypersensitivity reactions
include: 1) complement activation-related pseudoallergy
(CARPA) (Szebeni et al., 2011; Dézsi et al., 2014; Mohamed
et al., 2019), whereby anti-PEG antibodies bound to PEG on a
nanoparticle or liposome surface can activate the complement
cascade, liberating the anaphylatoxins C3a and C5a (Neun et al.,
2018; Mohamed et al., 2019; Chen et al., 2020) and 2) Fc receptor
activation of innate immune cells either by anti-PEG IgE
antibodies (Shah et al., 2013; Stone et al., 2019; Zhou et al.,
2021) or allergen-specific IgG that binds to Fc gamma receptors
(FcγRs) expressed on platelets, macrophages, basophils, or
neutrophils to release various mediators such as platelet-
activating factor (PAF), cysteinyl leukotrienes (CysLTs),
histamine, and serotonin (Finkelman, 2007; Reber et al., 2017;
Beutier et al., 2018).

Accelerated blood clearance (ABC) of PEGylated compounds
was identified in mice in 1999, and in patients treated with
pegaspargase in 2007 (Cheng et al., 1999; Cheng et al., 2000;
Armstrong et al., 2007) and is caused by an immune reaction
associated with repeat exposure to PEG. The first injection of
PEGylated drugs induces anti-PEG antibodies, which then bind
and form an immune complex with the second dose of the
PEGylated compound to activate the complement system. This
results in the opsonization of PEG with C3 fragments and
enhanced uptake by Kupffer cells in the liver and can result in
altered drug pharmacokinetics and biodistribution (PK, BD) and
reduced drug efficacy in subsequent doses (Dams et al., 2000;
Ishida et al., 2006a; Ishida et al., 2008; Ishida and Kiwada, 2008;
Hashimoto et al., 2014). Rapid drug clearance and loss of drug
efficacy have been reported following treatment with PEG-
uricase, pegvaliase (Gupta et al., 2018), PEGylated liposomes
(Dams et al., 2000; Laverman et al., 2001; Ishida et al., 2003),
and PEGylated liposomal doxorubicin. ABC has also been
observed in animal models treated with empty PEGylated
liposomes (Dams et al., 2000; Semple et al., 2005; Ishida et al.,
2006a; Ishida et al., 2006b), poly(lactic acid) (PLA) nanoparticles,
microbubbles, and lipoplexes (Ishihara et al., 2009; Fix et al.,
2018). In addition, anti-PEG antibodies can hinder the
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distribution of PEGylated nanoparticles to target tissues. For
example, N-linked glycans present on anti-PEG antibodies
bound to PEGylated nanoparticles can interact with mucin in
the mucosal layer and prevent passage to epithelial surfaces
(Henry et al., 2016).

Some PEGylated nanomaterials and proteins do not display
ABC in animal models (Koide et al., 2008; Kaminskas et al., 2011;
Koide et al., 2012; Grenier et al., 2018) and one explanation for
this phenomenon is that in order for ABC to occur, a threshold
molar ratio of anti-PEG antibodies to PEG compound is required
for efficient clearance (Shiraishi et al., 2016; McSweeney et al.,
2018). For example, the molar concentration of PEG-proteins in
circulation is typically lower than that of PEG-liposomes (Grenier
et al., 2018) at therapeutic dosing levels; thus, nanoparticles are
thought to be less vulnerable to anti-PEG antibody-associated
clearance than proteins. Indeed, prior studies show that strong
ABC is observed when the number of antibodies in circulation
exceeds the number of PEGylated compounds (Xu et al., 2022).
This trend holds across most PEGylated compounds including
proteins, liposomes, micelles, and polymeric nanoparticles and
agrees with previous studies showing that three anti-PEG
antibodies per PEGylated protein or about 10 anti-PEG
antibodies per pegylated liposome are required for ABC
(Shiraishi et al., 2016; McSweeney et al., 2018; Chang et al.,
2019). These findings suggest that only compounds dosed at very
low molar concentrations (e.g. PEG-IFNα) may be susceptible to
polymer-specific ABC whereas the estimated threshold
concentration of anti-PEG antibodies needed to accelerate the
clearance of nucleic acid drug carriers (e.g. Patrisan)
overwhelmingly exceed those observed in patient blood (Xu
et al., 2022).

In addition to formulation-dependent susceptibility to
polymer immunogenicity, mode of administration can also
modulate the impact of antibody recognition. Most clinically
approved polymer-drug conjugates are intravenously
administered and thus their interaction with plasma IgG and
IgM is higher than may be expected following intramuscular or
intratumoral injection, as is common among many mRNA
indications including both BNT162b2/Comirnaty and mRNA-
1273/Spikevax (Schoenmaker et al., 2021). Thus, the strikingly
low rates of anaphylaxis observed following SARS-CoV-2 mRNA
vaccination (CDC COVID-19 Response Team and Food and
Drug Administration, 2021) may be attributable in part to its
intramuscular administration. Future studies focusing on the
impact of polymer type/architecture/density and corresponding
immunogenicity on drug efficacy and transport (e.g. lymphatic)
following local administration are therefore warranted.

PEG Immunogenicity can be Minimized but
Alternative Polymers in Clinical Use are
Lacking
Having established that PEG immunogenicity can limit the
clinical utility of PEG-drug conjugates and that nanoparticle-
based formulations may be less vulnerable to some of these effects
relative to polymer-protein drug conjugates, how can one
minimize the impact and risk of immunogenicity-diminished

efficacy from future polymer-conjugated drugs and vaccines? As
discussed above, PEG immunogenicity can arise through a variety
of mechanisms (Xu et al., 2022) and includes antibody
recognition associated with hypersensitivity reactions (e.g.
anaphylaxis), accelerated blood clearance, premature drug
release, or cross-reaction to other PEGylated therapies, among
others. While limited in number, prior studies suggest that PEG
antibody recognition is strongly dependent on polymermolecular
weight (Xu et al., 2022), architecture, and end-functional group
(Saifer et al., 2014). For example, antibodies with affinity towards
backbone ethylene oxide units recognize immobilized PEG that is
2 kDa and larger with a minimum epitope subunit of approx. 16
repeats (700 Da) (Lee et al., 2020). Given that nearly all
systemically administered polymer-drug conjugates are 2 kDa
and above—per linear chain—the utilization of higher
densities of lower molecular weight PEG may diminish the
therapeutic impact of these backbone-specific antibodies. Such
an approach is conceptually illustrated by branched PEG-drug
conjugates (e.g. peginterferon alfa-2a, certolizumabpegol, and
pegaptanib); however, those in clinical use (and which are
systemically administrable) are limited to single site-modified,
di-branched PEGs with per-arm molecular weight of approx.
10–30 kDa and with methoxy terminal groups; thus, the use of
increasingly branched PEGs (i.e. hyperbranched, star, dendritic,
bottlebrush) of lower per-branch molecular weight may diminish
recognition by backbone-specific antibodies while maintaining
favorable drug circulation, solubility, stability, activity profiles.

Polymer end-terminal groups can also play an important role
in engineering future, less immunologically vulnerable PEG-drug
conjugates as antibodies that recognize end-groups represent the
other primary class of PEG-specific antibodies detected in vivo.
While all clinical PEG-drug conjugates are chain-terminated by
methoxy groups, recent preclinical studies suggest that hydroxy-
terminal PEG conjugates generate lower amounts of backbone-
specific anti-PEG IgM (Shimizu et al., 2018) and, while this
improved immunogenicity comes with the tradeoff of higher
complement activation and second-dose ABC (and typically,
slightly shorter circulation half-life (Arvizo et al., 2011)), these
findings may lead to the development of future polymer-drug
conjugates with less propensity for immune activation. Other
polymer end-group engineering strategies include the utilization
of zwitterionic (Arvizo et al., 2011), ethoxy, and n-butyl ether
(Saifer et al., 2014) moieties.

In addition to direct modifications of the polymer,
corresponding drugs themselves can also modulate PEG
immunogenicity. The introduction of 2’-fluro-modified
pyrimidines and 2′-O-methyl-modifed purines has been shown
to reduce the immunogenicity of PEGylated nucleic acids (Judge
et al., 2005; Wang et al., 2009; Yu et al., 2009; Lee et al., 2016)
while chemotherapeutics cytotoxic to B cells such as doxorubicin,
mitoxantrone or oxaliplatin (Laverman et al., 2001; Ishida et al.,
2006c; Cui et al., 2008; Abu Lila et al., 2012; Nagao et al., 2013)
have been shown to mitigate anti-PEG IgM induced via
PEGylated liposomal drug carriers often used to deliver these
compounds in vivo (Cui et al., 2008; Mohamed et al., 2019).

Pharmacologic approaches have been further employed to
diminish the impact of polymer immunogenicity including
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conjugation to or pre-treatment with immunosupressants, as
well as the pre-treatment or co-infusion of tolerogenic
compounds. Khanna et al. for example recently reported that
pretreatment with the B/T cell immunosuppressant,
mycophenolate mofetil, significantly improved treatment
outcomes in a Phase I trial of patients with gout receiving
pegloticase (Khanna et al., 2021). Other immunosuppressives
under investigation to mitigate pegloticase immunogenicity
include methotrexate, azathioprine, and leflunomide, while
those used in conjunction with other ADA-prone therapies
include rapamycin and anti-CD20. Likewise, pre-treatment or
co-treatment with polymer, in particular high molecular weight
(i.e. 40 kDa) PEG, has also been shown to reduce liposome-
induced anti-PEG antibodies in preclinical studies (McSweeney
et al., 2021). Taken together, these pharmacologic approaches
are viewed by some to obviate the need PEG alternatives or
derivatives; however, the deployment of immunosuppressives in
combination with polymer-based vaccines and
immunostimulatory therapies presents significant tradeoffs to
drug efficacy, while PEG-based tolerogenics remain to be tested
in patients.

Given 1) the therapeutic impact of PEG on drug
immunogenicity, 2) the possible increasing prevalence of pre-
existing and drug-induced PEG immunity, 3) the growing public
need for safe and effective mRNA vaccines, and 4) our prevailing
reliance on PEG for use in clinically approved nucleic acid and
polymer-drug conjugate therapies (Schoenmaker et al., 2021), it is
clear that the development and clinical validation of alternatives
to (or derivatives of) PEG represents not only an unmet clinical
need but also one with broad public health and national strategic
interest. Indeed, the need for alternatives to PEG is a common
refrain among those in the field (Harris, 1992), one as old as the
first polymer-drug conjugate, Adagen; however, given the wide
variety of potential candidate macromolecules such as
polysaccharides, polyglycerols, and glycopolymers, (reviewed in
detail elsewhere (Knop et al., 2010; Pelegri-O’Day et al., 2014;
Bludau et al., 2017; Ekladious et al., 2019; Xu et al., 2022)), it begs
the question as to why alternatives have yet to be approved (and
studied post-approval) beyond poly(styrene co-maleic acid)
(1993, Japan). Concerns over PEG immunogenicity have led
some pharmaceutical companies to shy-away from or drop
PEGylated products from their pipelines entirely (de Vrieze,
2020), thus the prospect of biopharma advancing clinically
untested polymers through lengthy and expensive clinical trials
is a difficult ask in the absence of a thoughtful incentive structure.

Given the challenging risk-reward of advancing non-PEG-
based polymer-drug conjugates towards clinical translation, what
can governments and funding agencies do to facilitate continued
innovation in polymer-drug conjugate development and ensure
the capacity for safe and effective vaccination at-scale? 1)
Biosimilar-like regulatory guidelines for conjugable polymers
(i.e. polysimilars) may be one approach to formalize and

streamline the approval of new polymer-drug conjugates,
albeit one likely requiring increased rigor given the wide
structural diversity and potential health hazards of various
polymer subunits relative to proteins. 2) Funding or federal
lab support to perform large-scale longitudinal studies of
immunogenicity towards polymers and other drug conjugates/
excipients (lipids, polysaccharides, polypeptides, etc) would
elucidate current (and potentially dynamic or age-, race-, and
sex-specific) risks of polymer immunogenicity to human health,
drug conjugate efficacy, and the strategic national need for
mRNA vaccine-stabilizing polymers. 3) Federally subsidized
R&D to offset the risks taken-on by companies exploring
PEG- and other polymer-conjugates would greatly incentivize
further innovation in this space. 4) Funding to improve our poor
mechanistic understanding of polymer-induced immunogenicity
and associated short- and long-term health risks would accelerate
the discovery of new PEG derivatives and alternatives or propel
historically utilized polymers through clinical translation. 5)
Federal partnerships to ensure the financial viability of
domestically manufactured, pharmaceutical-grade PEG and
other polymers, as a matter of national interest, would ensure
our readiness for future pandemics (and supply chain challenges)
surely yet-to-come. In closing, while it is tempting to suggest a
singular direction for polymer-drug conjugate development in
the future, we also acknowledge that the ideal properties for a
conjugation partner vary substantially with drug class, mode of
administration, dosing frequency, and disease indication as
discussed above; thus, with proper incentives, funding, and
tools we anticipate that future conjugates will not only
increase in diversity but also diverge based upon drug type
and/or indication.
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